7.若椭圆+=1(a>b>0)与双曲线-=1的离心率分别为e1,e2,则e1e2的取值范围为________.
答案 (0,1)
解析 可知e==1-,
e==1+,
所以e+e=2>2e1e100,b>0)的左焦点F作圆x2+y2=的切线,切点为E,延长FE交双曲线的右支于点P,若E为PF的中点,则双曲线的离心率为________.
答案
解析 设双曲线的右焦点为F′,由于E为PF的中点,坐标原点O为FF′的中点,所以EO∥PF′,又EO⊥PF,所以PF′⊥PF,且PF′=2×=a,故PF=3a,根据勾股定理得FF′=a.所以双曲线的离心率为=.
9.(2014·浙江)设直线x-3y+m=0(m≠0)与双曲线-=1(a>0,b>0)的两条渐近线分别交于点A,B.若点P(m,0)满足PA=PB,则该双曲线的离心率是________.
答案
解析 双曲线-=1的渐近线方程为y=±x.
由得A(,),
由得B(,),
所以AB的中点C坐标为(,).
设直线l:x-3y+m=0(m≠0),
因为PA=PB,所以PC⊥l,
所以kPC=-3,化简得a2=4b2.
在双曲线中,c2=a2+b2=5b2,
所以e==.
10.(2013·湖南)设F1,F2是双曲线C:-=1(a>0,b>0)的两个焦点,P是C上一点,若PF1+PF2=6a,且△PF1F2的最小内角为30°,则双曲线C的离心率为________.
答案
解析 不妨设PF1>PF2,
则PF1-PF2=2a,
又∵PF1+PF2=6a,
∴PF1=4a,PF2=2a.
又在△PF1F2中,∠PF1F2=30°,
由正弦定理得,∠PF2F1=90°,∴F1F2=2a,
∴双曲线C的离心率e==.
11.P(x0,y0)(x0≠±a)是双曲线E:-=1(a>0,b>0)上一点,M,N分别是双曲线E的左,右顶点,直线PM,PN的斜率之积为.
(1)求双曲线的离心率;
(2)过双曲线E的右焦点且斜率为1的直线交双曲线于A,B两点,O为坐标原点,C为双曲线上一点,满足=λ+,求λ的值.
解 (1)点P(x0,y0)(x0≠±a)在双曲线-=1上,
有-=1.
由题意有·=,
可得a2=5b2,c2=a2+b2=6b2,
则e==.
(2)联立得4x2-10cx+35b2=0.
设A(x1,y1),B(x2,y2).
则①
设=(x3,y3),=λ+,
即
又C为双曲线上一点,即x-5y=5b2,
有(λx1+x2)2-5(λy1+y2)2=5b2.
化简得λ2(x-5y)+(x-5y)+2λ(x1x2-5y1y2)=5b2.
又A(x1,y1),B(x2,y2)在双曲线上,
所以x-5y=5b2,x-5y=5b2.
由(1)可知c2=6b2,
由①式又有x1x2-5y1y2=x1x2-5(x1-c)(x2-c)=-4x1x2+5c(x1+x2)-5c2=10b2.
得λ2+4λ=0,解得λ=0或λ=-4.
12.(2014·江西)如图,已知双曲线C:-y2=1(a>0)的右焦点为F.点A,B分别在C的两条渐近线上,AF⊥x轴,AB⊥OB,BF∥OA(O为坐标原点).
(1)求双曲线C的方程;
(2)过C上一点P(x0,y0)(y0≠0)的直线l:-y0y=1与直线AF相交于点M,与直线x=相交于点N.证明:当点P在C上移动时,恒为定值,并求此定值.
解 (1)设F(c,0),
直线OB方程为y=-x,
直线BF的方程为y=(x-c),解得B(,-).
又直线OA的方程为y=x,
则A(c,),kAB==.
又因为AB⊥OB,所以·(-)=-1,
解得a2=3,
故双曲线C的方程为-y2=1.
(2)由(1)知a=,则直线l的方程为
-y0y=1(y0≠0),即y=.
因为c==2,所以直线AF的方程为x=2,
所以直线l与AF的交点为M(2,);
直线l与直线x=的交点为N(,).
则==
=·.
因为P(x0,y0)是C上一点,则-y=1,
代入上式得=·
=·=,
即==为定值.