单独报考
当前位置:中华考试网 >> 高考 >> 山东高考 >> 山东高考数学模拟题 >> 2017年山东专项提分练习试题(五)

2017年山东专项提分练习试题(五)

中华考试网  2017-03-01  【

一、选择题

1.已知等比数列{an},且a4+a8=

dx,则a6(a2+2a6+a10)的值为(  )

A.π2 B.4

C.π D.-9π

答案:A 命题立意:本题考查等比数列的性质及定积分的运算,正确地利用定积分的几何意义求解积分值是解答本题的关键,难度中等.

解题思路:由于dx表示圆x2+y2=4在第一象限内部分的面积,故dx=×π×22=π,即a4+a8=π,又由等比数列的性质,得a6(a2+2a6+a10)=a6a2+2a+a6a10=a+2a4a8+a=(a4+a8)2=π2,故选A.

2.(东北三校二次联考)已知{an}是等差数列,Sn为其前n项和,若S21=S4 000,O为坐标原点,点P(1,an),点Q(2 011,a2 011),则·=(  )

A.2 011 B.-2 011

C.0 D.1

答案:A 命题立意:本题考查等差数列前n项和公式与性质及平面向量的坐标运算,难度中等.

解题思路:由已知S21=S4 000a22+a23+…+a4 000==3 979a2 011=0,故有a2 011=0,

因此·=2 011+ana2 011=2 011,故选A.

3.以双曲线-=1的离心率为首项,以函数f(x)=4x-2的零点为公比的等比数列的前n项的和Sn=(  )

A.3×(2n-1) B.3-(2n-1)

C.- 3×(2n-1) D.-3+(2n-1)

答案:B 命题立意:本题考查双曲线的离心率及函数的零点与等比数列前n项和公式的应用,难度较小.

解题思路:由双曲线方程易得e==,函数零点为,故由公式可得Sn==3=3-,故选B.

4.等差数列{an}的前n项和为Sn,若a4=15,S5=55,则过点P(3,a3),Q(4,a4)的直线的斜率为(  )

A.4 B.1

C.-4 D.-14

答案:A 命题立意:本题考查等差数列的性质、前n项和及直线斜率的坐标计算形式,难度较小.

解题思路:由题S5==55,故a1+a5=22,根据等差数列的性质可知a1+a5=2a3=22,故a3=11,因为a4=15,则过点P(3,a3),Q(4,a4)的直线的斜率为kPQ===4,故选A.

5.在等比数列{an}中,对于n∈N*都有an+1·a2n=3n,则a1·a2·…·a6=(  )

A.±()11 B.()13

C.±35 D.36

答案:D 命题立意:本题考查数列的递推公式、等比数列的性质及整体代换思想,考查考生的运算能力,难度中等.

解题思路:由等比数列的性质可知,a1·a2·a3·a4·a5·a6=(a2·a6)·a4·(a1·a5)·a3=(a3)3(a4)3=(a3·a4)3,令n=2,得a3·a4=32,故选D.

6.等差数列{an}的前n项和为Sn,公差为d,已知(a8+1)3+2 013(a8+1)=1,(a2 006+1)3+2 013(a2 006+1)=-1,则下列结论正确的是(  )

A.d<0,S2 013=2 013 B.d>0,S2 013=2 013

C.d<0,S2 013=-2 013 D.d>0,S2 013=-2 013

答案:C 命题立意:本题考查函数的性质——单调性与奇偶性、等差数列的性质与前n项和公式,难度中等.

解题思路:记f(x)=x3+2 013x,则函数f(x)是在R上的奇函数与增函数;依题意有f(a8+1)=-f(a2 006+1)=1>f(0)=0,即f(a8+1)=f[-(a2 006+1)]=1,a8+1=-(a2 006+1),a8+1>0>a2 006+1即a8>a2 006,d=<0;a8+a2 006=-2,S2 013===-2 013,故选C.

123
纠错评论责编:jiaojiao95
相关推荐
热点推荐»