单独报考
当前位置:中华考试网 >> 高考 >> 湖南高考 >> 湖南高考数学模拟题 >> 江苏高考专题练习(理科):圆的方程

江苏高考专题练习(理科):圆的方程

中华考试网  2015-09-10  【

  [A级 基础达标练]

  一、填空题

  1.若圆C的半径为1,圆心在第一象限,且与直线4x-3y=0和x轴都相切,则该圆的标准方程是________.

  [解析] 设圆心C(a,b)(a>0,b>0),由题意得b=1.

  又圆心C到直线4x-3y=0的距离d==1,

  解得a=2或a=-(舍).

  所以该圆的标准方程为(x-2)2+(y-1)2=1.

  [答案] (x-2)2+(y-1)2=1

  2.(2014·南京质检)已知点P(2,1)在圆C:x2+y2+ax-2y+b=0上,点P关于直线x+y-1=0的对称点也在圆C上,则圆C的圆心坐标为________.

  [解析] 因为点P关于直线x+y-1=0的对称点也在圆上,

  该直线过圆心,即圆心满足方程x+y-1=0,

  因此-+1-1=0,解得a=0,所以圆心坐标为(0,1).

  [答案] (0,1)

  3.已知圆心在直线y=-4x上,且圆与直线l:x+y-1=0相切于点P(3,-2),则该圆的方程是________.

  [解析] 过切点且与x+y-1=0垂直的直线为y+2=x-3,与y=-4x联立可求得圆心为(1,-4).

  半径r=2,所求圆的方程为(x-1)2+(y+4)2=8.

  [答案] (x-1)2+(y+4)2=8

  4.(2014·江苏常州模拟)已知实数x,y满足x2+y2-4x+6y+12=0,则|2x-y|的最小值为________.

  [解析] x2+y2-4x+6y+12=0配方得(x-2)2+(y+3)2=1,令x=2+cos α,

  y=-3+sin α,则|2x-y|=|4+2cos α+3-sin α|

  =|7-sin (α-φ)|≥7-(tan φ=2).

  [答案] 7-

  5.已知圆x2+y2+4x-8y+1=0关于直线2ax-by+8=0(a>0,b>0)对称,则+的最小值是________.

  [解析] 由圆的对称性可得,直线2ax-by+8=0必过圆心(-2,4),所以a+b=2.所以+=+=++5≥2+5=9,由=,则a2=4b2,又由a+b=2,故当且仅当a=,b=时取等号.

  [答案] 9

  6.(2014·南京市、盐城市高三模拟)在平面直角坐标系xOy中,若圆x2+(y-1)2=4上存在A,B两点关于点P(1,2)成中心对称,则直线AB的方程为________.

  [解析] 由题意得圆心与P点连线垂直于AB,所以kOP==1,kAB=-1,

  而直线AB过P点,所以直线AB的方程为y-2=-(x-1),即x+y-3=0.

  [答案] x+y-3=0

  7.(2014·泰州质检)若a,且方程x2+y2+ax+2ay+2a2+a-1=0表示圆,则a=________.

  [解析] 要使方程x2+y2+ax+2ay+2a2+a-1=0表示圆,则a2+(2a)2-4(2a2+a-1)>0,解得-20)关于直线x+y+2=0对称.

  (1)求圆C的方程;

  (2)设Q为圆C上的一个动点,求·的最小值.

  [解] (1)设圆心C(a,b),

  由题意得解得

  则圆C的方程为x2+y2=r2,

  将点P的坐标代入得r2=2,

  故圆C的方程为x2+y2=2.

  (2)设Q(x,y),则x2+y2=2,

  ·=(x-1,y-1)·(x+2,y+2)

  =x2+y2+x+y-4=x+y-2.

  令x=cos θ,y=sin θ,

  ·=x+y-2=(sin θ+cos θ)-2

  =2sin-2,

  所以·的最小值为-4.

  10.已知圆的圆心为坐标原点,且经过点(-1,).

  (1)求圆的方程;

  (2)若直线l1:x-y+b=0与此圆有且只有一个公共点,求b的值;

  (3)求直线l2:x-y+2=0被此圆截得的弦长.

  [解] (1)已知圆心为(0,0),半径r==2,所以圆的方程为x2+y2=4.

  (2)由已知得l1与圆相切,则圆心(0,0)到l1的距离等于半径2,即=2,解得b=±4.

  (3)l2与圆x2+y2=4相交,圆心(0,0)到l2的距离d==,所截弦长l=2=2=2.

  [B级 能力提升练]

  一、填空题

  1.(2014·南通模拟)在圆x2+y2-2x-6y=0内,过点E(0,1)的最长弦和最短弦分别为AC和BD,则四边形ABCD的面积为________.

  [解析] 圆的标准方程为(x-1)2+(y-3)2=10,则圆心(1,3),半径r=,

  由题意知ACBD,且|AC|=2,|BD|=2=2,

  所以四边形ABCD的面积为S=|AC|·|BD|

  =×2×2=10.

  [答案] 10

  2.(2014·江苏省连云港市高三第二次调研考试数学试题)在平面直角坐标系xOy中,已知点P(3,0)在圆C:x2+y2-2mx-4y+m2-28=0内,动直线AB过点P且交圆C于A,B两点,若ABC的面积的最大值为16,则实数m的取值范围为________.

  [解析] 圆C的标准方程为(x-m)2+(y-2)2=32,首先由点P在圆内,则(3-m)2+(0-2)2<32,解得3-2,圆C与直线y=-2x+4不相交,所以t=-2不符合题意,舍去.

  故圆C的方程为(x-2)2+(y-1)2=5.

纠错评论责编:xiejinyan
相关推荐
热点推荐»