单独报考
当前位置:中华考试网 >> 高考 >> 湖南高考 >> 湖南高考数学模拟题 >> 2015届湖南高考数学冲刺专题练习15

2015届湖南高考数学冲刺专题练习15_第2页

中华考试网  2015-05-14  【

  一、非标准1.C 解析:根据抛物线方程可得其焦点坐标为,双曲线的上焦点为(0,2),依题意则有=2,解得a=8.

  2.C 解析:由已知,得准线方程为x=-2,

  F的坐标为(2,0).

  又A(-2,3),直线AF的斜率为k==-.故选C.

  3.B 解析:抛物线方程可化为x2=-,其准线方程为y=.

  设M(x0,y0),则由抛物线的定义,可知-y0=1y0=-.

  4.B 解析:设A(x1,y1),B(x2,y2),抛物线方程为y2=2px,

  则两式相减可得2p=×(y1+y2)=kAB×2=2,

  即可得p=1,故抛物线C的方程为y2=2x.

  5.B 解析:抛物线C:y2=8x的焦点为F(2,0),准线为x=-2,K(-2,0).

  设A(x0,y0),过点A向准线作垂线AB垂足为B,则B(-2,y0).

  |AK|=|AF|,

  又|AF|=|AB|=x0-(-2)=x0+2,

  由|BK|2=|AK|2-|AB|2,

  得=(x0+2)2,即8x0=(x0+2)2,

  解得A(2,±4).

  故AFK的面积为|KF|·|y0|

  =×4×4=8.

  6.x2+(y-4)2=64 解析:抛物线的焦点为F(0,4),准线为y=-4,

  则圆心为(0,4),半径r=8.

  故圆的方程为x2+(y-4)2=64.

  7.3x+py+2q=0 解析:由题意知,直线AB与x轴不垂直.

  设直线AB的方程为y=kx+m,与抛物线方程联立,得x2-2pkx-2pm=0,

  此方程与x2+6x+4q=0同解,

  则解得

  故直线AB的方程为y=-x-,

  即3x+py+2q=0.

  8.解:由M(2,2)知,线段AB所在的直线的斜率存在,

  设过点M的直线方程为y-2=k(x-2)(k≠0).

  由消去y,

  得k2x2+(-4k2+4k-4)x+4(k-1)2=0.

  设A(x1,y1),B(x2,y2),

  则x1+x2=,

  x1x2=.

  由题意知=2,

  则=4,解得k=1,

  于是直线方程为y=x,x1x2=0.

  因为|AB|=|x1-x2|=4,

  又焦点F(1,0)到直线y=x的距离d=,所以ABF的面积是×4=2.

  9.解:(1)设P(x,y)是曲线C上任意一点,

  则点P(x,y)满足-x=1(x>0),

  化简得y2=4x(x>0).

  (2)设过点M(m,0)(m>0)的直线l与曲线C的交点为A(x1,y1),B(x2,y2).

  设l的方程为x=ty+m.

  由得y2-4ty-4m=0,

  Δ=16(t2+m)>0,

  于是

  因为=(x1-1,y1),

  =(x2-1,y2),

  所以=(x1-1)(x2-1)+y1y2=x1x2-(x1+x2)+y1y2+1.

  又<0,

  所以x1x2-(x1+x2)+y1y2+1<0,③

  因为x=,所以不等式可变形为

  +y1y2-+1<0,

  即+y1y2-[(y1+y2)2-2y1y2]+1<0.

  将代入整理得m2-6m+1<4t2.

  因为对任意实数t,4t2的最小值为0

  所以不等式对于一切t成立等价于m2-6m+1<0,

  即3-20),则FD的中点为.

  因为|FA|=|FD|,

  由抛物线的定义知3+,

  解得t=3+p或t=-3(舍去).

  由=3,解得p=2.

  所以抛物线C的方程为y2=4x.

  (2)由(1)知F(1,0).

  设A(x0,y0)(x0y0≠0),D(xD,0)(xD>0),

  因为|FA|=|FD|,

  则|xD-1|=x0+1.

  由xD>0得xD=x0+2,

  故D(x0+2,0).

  故直线AB的斜率kAB=-.

  因为直线l1和直线AB平行,设直线l1的方程为y=-x+b,

  代入抛物线方程得y2+y-=0,

  由题意Δ==0,

  得b=-.

  设E(xE,yE),

  则yE=-,xE=.

  当≠4时,kAE==-,

  可得直线AE的方程为y-y0=(x-x0),

  由=4x0,整理可得y=(x-1),

  直线AE恒过点F(1,0).

  当=4时,直线AE的方程为x=1,过点F(1,0).

  所以直线AE过定点F(1,0).

  由知直线AE过焦点F(1,0),

  所以|AE|=|AF|+|FE|=(x0+1)+=x0++2.

  设直线AE的方程为x=my+1,

  因为点A(x0,y0)在直线AE上,

  故m=.

  设B(x1,y1),

  直线AB的方程为y-y0=-(x-x0),由于y0≠0,

  可得x=-y+2+x0,

  代入抛物线方程得y2+y-8-4x0=0.

  所以y0+y1=-,

  可求得y1=-y0-,

  x1=+x0+4.

  所以点B到直线AE的距离为

  d=

  ==4.

  则ABE的面积S=×4≥16,

  当且仅当=x0,即x0=1时等号成立.

  所以ABE的面积的最小值为16.

12
纠错评论责编:xiejinyan
相关推荐
热点推荐»