答案
10.已知函数f(x)=(a是常数且a>0).对于下列命题:
函数f(x)的最小值是-1;
函数f(x)在R上是单调函数;
若f(x)>0在上恒成立,则a的取值范围是a>1;
对任意的x1<0,x2<0且x1≠x2,恒有
f<.
其中正确命题的序号是____________.
解析 根据题意可画出草图,由图象可知,显然正确;函数f(x)在R上不是单调函数,故错误;若f(x)>0在上恒成立,则2a×-1>0,a>1,故正确;由图象可知在(-∞,0)上对任意的x1<0,x2<0且x1≠x2,恒有f<成立,故正确.
答案 三、解答题
.求函数y=a1-x2(a>0且a≠1)的单调区间.
当a>1时,函数y=a1-x2在区间[0,+∞)上是减函数,在区间(-∞,0]上是增函数;
当0x1≥2,则f(x1)-f(x2)=x+-x-=[x1x2(x1+x2)-a],
由x2>x1≥2,得x1x2(x1+x2)>16,x1-x2<0,
x1x2>0.
要使f(x)在区间[2,+∞)上是增函数,
只需f(x1)-f(x2)<0,
即x1x2(x1+x2)-a>0恒成立,则a≤16.
.已知函数f(x)=a·2x+b·3x,其中常数a,b满足ab≠0.
(1)若ab>0,判断函数f(x)的单调性;
(2)若ab<0,求f(x+1)>f(x)时的x的取值范围.
解 (1)当a>0,b>0时,因为a·2x,b·3x都单调递增,所以函数f(x)单调递增;当a<0,b<0时,因为a·2x,b·3x都单调递减,所以函数f(x)单调递减.
(2)f(x+1)-f(x)=a·2x+2b·3x>0.
(i)当a<0,b>0时,x>-,
解得x>log;
(ii)当a>0,b<0时,x<-,
解得x0时,f(x)>1.
(1)求证:f(x)是R上的增函数;
(2)若f(4)=5,解不等式f(3m2-m-2)<3.(1)证明 设x1,x2R,且x10,f(x2-x1)>1.
f(x2)-f(x1)=f[(x2-x1)+x1]-f(x1)
=f(x2-x1)+f(x1)-1-f(x1)=f(x2-x1)-1>0.
f(x2)>f(x1).即f(x)是R上的增函数.
(2) f(4)=f(2+2)=f(2)+f(2)-1=5,
f(2)=3,
原不等式可化为f(3m2-m-2)