三、解答题
.数列{an}的通项公式是an=n2-7n+6.
(1)这个数列的第4项是多少?
(2)150是不是这个数列的项?若是这个数列的项,它是第几项?
(3)该数列从第几项开始各项都是正数?
(1)当n=4时,a4=42-4×7+6=-6.
(2)令an=150,即n2-7n+6=150,解得n=16,即150是这个数列的第16项.
(3)令an=n2-7n+6>0,解得n>6或n<1(舍),
从第7项起各项都是正数.
.若数列{an}的前n项和为Sn,且满足an+2SnSn-1=0(n≥2),a1=.
(1)求证:成等差数列;
(2)求数列{an}的通项公式.
(1)证明 当n≥2时,由an+2SnSn-1=0,
得Sn-Sn-1=-2SnSn-1,所以-=2,
又==2,故是首项为2,公差为2的等差数列.
(2)解 由(1)可得=2n,Sn=.
当n≥2时,
an=Sn-Sn-1=-==-.
当n=1时,a1=不适合上式.
故an=.设数列{an}的前n项和为Sn.已知a1=a(a≠3),an+1=Sn+3n,nN*.
(1)设bn=Sn-3n,求数列{bn}的通项公式;
(2)若an+1≥an,nN*,求a的取值范围.
解 (1)依题意,Sn+1-Sn=an+1=Sn+3n,
即Sn+1=2Sn+3n,由此得Sn+1-3n+1=2(Sn-3n),
又S1-31=a-3(a≠3),故数列{Sn-3n}是首项为a-3,公比为2的等比数列,
因此,所求通项公式为bn=Sn-3n=(a-3)2n-1,nN*.
(2)由(1)知Sn=3n+(a-3)2n-1,nN*,
于是,当n≥2时,an=Sn-Sn-1=3n+(a-3)2n-1-3n-1-(a-3)2n-2=2×3n-1+(a-3)2n-2,
当n=1时,a1=a不适合上式,
故an=
an+1-an=4×3n-1+(a-3)2n-2
=2n-2,
当n≥2时,an+1≥an12·n-2+a-3≥0a≥-9.
又a2=a1+3>a1.
综上,所求的a的取值范围是[-9,+∞).
.在等差数列{an}中,a3+a4+a5=84,a9=73.
(1)求数列{an}的通项公式;
(2)对任意mN*,将数列{an}中落入区间(9m,92m)内的项的个数记为bm,求数列{bm}的前m项和Sm.
解 (1)因为{an}是一个等差数列,
所以a3+a4+a5=3a4=84,即a4=28.
设数列{an}的公差为d,则5d=a9-a4=73-28=45,故d=9.
由a4=a1+3d得28=a1+3×9,即a1=1.
所以an=a1+(n-1)d=1+9(n-1)=9n-8(nN*).
(2)对mN*,若9m 则9m+8<9n<92m+8,因此9m-1+1≤n≤92m-1, 故得bm=92m-1-9m-1. 于是Sm=b1+b2+b3+…+bm =(9+93+…+92m-1)-(1+9+…+9m-1) =-