单独报考
当前位置:中华考试网 >> 高考 >> 海南高考 >> 海南高考数学模拟题 >> 2017年海南高考数学基础训练试题(十一)

2017年海南高考数学基础训练试题(十一)_第2页

中华考试网  2017-03-28  【

一、选择题(本大题共10小题,每小5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的)

1.若函数f(x)=sin(ω>0)的图象的相邻两条对称轴之间的距离为,且该函数图象关于点(x0,0)成中心对称,x0∈,则x0=(  )

A.   B.   C.   D.

解析:由题意得=,T=π,ω=2.又2x0+=kπ(kZ),x0=-(kZ),而x0,所以x0=.

答案:A

2.已知角θ的顶点与原点重合,始边与x轴的正半轴重合,终边在直线y=2x上,则sin的值为(  )

A. B.- C. D.-

解析:由题意,不妨设θ为第一象限角,故sinθ=,cosθ=,sin2θ=2sinθcosθ=,cos2θ=1-2sin2θ=-,故sin=(sin2θ+cos2θ)=×=.

答案:A

3.在ABC中,角A,B,C的对边分别为a,b,c,且b2=a2+bc,A=,则角C=(  )

A. B.

C. D.或

解析:在ABC中,由余弦定理得cosA=,即=,所以b2+c2-a2=bc,又b2=a2+bc,所以c2+bc=bc,所以c=(-1)b

答案:B

4.在ABC中,内角A,B,C所对的边分别是a,b,c.若c2=(a-b)2+6,C=,则ABC的面积是(  )

A.3 B.

C. D.3

解析:由c2=(a-b)2+6可得a2+b2-c2=2ab-6 .由余弦定理及C=可得a2+b2-c2=ab .所以由得2ab-6=ab,即ab=6.所以SABC=absin=×6×=.

答案:C

5.已知α为第四象限角,则tan(  )

A.一定是正数 B.一定是负数

C.正数、负数都有可能 D.有可能是零

解析:已知α为第四象限角,则有2kπ+<α<2kπ+2π(kZ),kπ+<

答案:B

6.当-≤x≤π时,函数f(x)=sinx+cosx的(  )

A.最大值是1,最小值是-

B.最大值是2,最小值是-

C.最大值是1,最小值是-1

D.最大值是2,最小值是-1

解析:f(x)=sinx+cosx=2=2sin,因为-≤x≤π,所以-≤x+≤,-≤sin≤1,故-≤f(x)≤2,选B.

答案:B

7.已知ω>0,在函数y=sinωx与y=cosωx的图象的交点中,相邻两个交点的横坐标之差的绝对值为1,则ω=(  )

A.1 B.2 C.π D.2π

解析:函数y=sinωx与y=cosωx的最小正周期T相同,由相邻两个交点的横坐标之差的绝对值为1,可得=1,即T=2,再由=2得到ω=π,故选C.

答案:C

8.若a∈(-∞,0),x0∈R,使acosx0≤a成立,则cos=(  )

A. B. C.- D.-

解析:因为a∈(-∞,0),x0∈R,使acosx0≤a成立,所以cosx0≥1,又cosx0≤1,故cosx0=1,sinx0=0,

cos=cosx0cos+sinx0sin=cosx0+sinx0=,选B.

答案:B

9.已知ABC的内角A,B,C所对的边分别为a,b,c,且2bsinA=a,若ABC为锐角三角形,则角B的大小为(  )

A. B. C. D.

解析:由2bsinA=a可得2sinBsinA=sinA,因为sinA≠0,所以sinB=,又ABC为锐角三角形,所以角B的大小为,选B.

答案:B

10.函数f(x)=Asin(ωx+φ)的部分图象如图所示,则其函数解析式是(  )

A.f(x)=sin

B.f(x)=sin

C.f(x)=sin

D.f(x)=sin

解析:依题意可得A=1,T=4×=2π,故=2π,得ω=1.由f(x)=sin(x+φ)经过点,得sin=1,又0<φ<,故φ=,故f(x)=sin,选A.

答案:A

二、填空题(本大题共5小题,每小5分,共25分.请把正确答案填在题中横线上)

11.已知sin=,cos(α+β)=,α,β(0,π),则sinα=________.

解析:α∈,β(0,π),

α+β,,

sin=,cos=,

sinβ=2sincos=,cosβ=1-2sin2=,cos(α+β)=,sin(α+β)=,sinα=sin[(α+β)-β]=sin(α+β)cosβ-cos(α+β)sinβ=.

答案:

12.函数f(x)=sin2x+2sin2x的最大值为________.

解析:f(x)=sin2x+2sin2x=sin2x+(1-cos2x)=sin2x-cos2x+=2+=2sin+,故函数f(x)的最大值为2+.

答案:2+

13.如图,在ABC中,已知点D在BC边上,且·=0,sinBAC=,AB=3,BD=,则cosC的值为________.

解析:因为ADAC,所以sinBAC=sin=cosBAD,所以cosBAD=.在ABD中,由正弦定理可知,=,又由cosBAD=可知sinBAD=,所以sinADB==,因为ADB=DAC+C=+C,所以cosC=.

答案:

14.四边形ABCD的内角A与内角C互补,AB=1,BC=3,CD=AD=2,则四边形ABCD的面积为________.

解析:由题设得,

BD2=BC2+CD2-2BC·CD·cosC=13-12cosC,

BD2=AB2+DA2-2AB·DA·cosA=5+4cosC,

由得:cosC=,故C=60°,BD=.

故四边形ABCD的面积S=AB·DA·sinA+BC·CD·sinC=·sin60°=2.

答案:2

15.在ABC中,角A,B,C所对的边分别为a,b,c.C=60°,c=,则=________.

解析:根据正弦定理可得=,即a=2sinA,所以======4.

答案:4

12
纠错评论责编:jiaojiao95
相关推荐
热点推荐»