2015年高考考试说明(海南省)——数学(文)
Ⅰ.考试性质和目标
一、考试性质
普通高等学校招生全国统一考试,是由合格的高中毕业生和具有同等学力的考生参加的选拔性考试.高等学校根据考生成绩,按已确定的招生计划,对考生德、智、体全面衡量,择优录取,因此,新课程高考应具有较高的信度、效度,必要的区分度和适当的灵活度.
二、考试目标
根据教育部考试中心《2015年普通高等学校招生全国统一考试大纲(文科·课程标准试验版)》(以下简称《大纲》),结合海南省基础教育的实际情况,制定了《2015年普通高等学校招生全国统一考试大纲的说明(文科·课程标准实验版)(供海南省使用)》(以下简称《说明》)的数学科部分。
制定《说明》既要有利于数学新课程的改革,又要发挥数学作为基础学科的作用;既要重视考查考生对中学数学知识的掌握程度,又要注意考查考生进入高等学校继续学习的潜能;既要符合《普通高中数学课程标准(实验)》和《普通高中课程方案(实验)》的要求,符合教育部考试中心《大纲》的要求,符合《海南省2007年普通高校招生考试改革指导方案》和海南省普通高中课程改革实验的实际情况,又要利用高考命题的导向功能,推动新课程的课堂教学改革。
(一)考核目标
一、知识目标
知识是指《标准》所规定的必修课程、选修系列1和选修系列4中的数学概念、性质、法则、公式、公理、定理以及由其内容反映的数学思想方法,还包括按照一定程序与步骤进行运算,处理数据、绘制图表等基本技能.
对知识的要求依次是了解、理解、掌握三个层次.
(1)了解:要求对所列知识的含义有初步的、感性的认识,知道这一知识内容是什么,按照一定的程序和步骤照样模仿,并能(或会)在有关的问题中识别和认识它.
这一层次所涉及的主要行为动词有:了解,知道、识别,模仿,会求、会解等.
(2)理解:要求对所列知识内容有较深刻的理性认识,知道知识间的逻辑关系,能够对所列知识作正确的描述说明并用数学语言表达,能够利用所学的知识内容对有关问题作比较、判别、讨论,具备利用所学知识解决简单问题的能力.
这一层次所涉及的主要行为动词有:描述,说明,表达、表示,推测、想象,比较、判别、判断,初步应用等.
(3)掌握:要求能够对所列的知识内容能够推导证明,利用所学知识对问题能够进行分析、研究、讨论,并且加以解决.
这一层次所涉及的主要行为动词有:掌握、导出、分析,推导、证明,研究、讨论、运用、解决问题等.
各部分知识的整体要求与定位参照《标准》相应模块的有关说明,依照《大纲》制定.
2、能力目标
能力是指空间想像能力、抽象概括能力、推理论证能力、运算求解能力、数据处理能力以及应用意识和创新意识.
(1)空间想像能力:能根据条件作出正确的图形,根据图形想象出直观形象;能正确地分析出图形中基本元素及其相互关系;能对图形进行分解、组合;会运用图形与图表等手段形象地揭示问题的本质.
(2)抽象概括能力:对具体的、生动的实例,在抽象概括的过程中,发现研究对象的本质;从给定的大量信息材料中,概括出一些结论,并能应用于解决问题或作出新的判断.
(3)推理论证能力:根据已知的事实和已获得的正确数学命题,论证某一数学命题真实性的初步的推理能力.推理包括合情推理和演绎推理,论证方法既包括按形式划分的演绎法和归纳法,也包括按思考方法划分的直接证法和间接证法.一般运用合情推理进行猜想,再运用演绎推理进行证明.
(4)运算求解能力:会根据法则、公式进行正确运算、变形和数据处理,能根据问题的条件,寻找与设计合理、简捷的运算途径;能根据要求对数据进行估计和近似计算.
(5)数据处理能力:会收集、整理、分析数据,能从大量数据中抽取对研究问题有用的信息,并作出判断.数据处理能力主要依据统计或统计案例中的方法对数据进行整理、分析,并解决给定的实际问题.
(6)应用意识:能综合应用所学数学知识、思想和方法解决问题,包括解决在相关学科、生产、生活中简单的数学问题;能理解对问题陈述的材料,并对所提供的信息资料进行归纳、整理和分类,将实际问题抽象为数学问题,建立数学模型;应用相关的数学方法解决问题并加以验证,并能用数学语言正确地表达和说明.应用的主要过程是依据现实的生活背景,提炼相关的数量关系,将现实问题转化为数学问题,构造数学模型,并加以解决.
(7)创新意识:能发现问题、提出问题,综合与灵活地应用所学的数学知识、思想方法,选择有效的方法和手段分析信息,进行独立的思考、探索和研究,提出解决问题的思路,创造性地解决问题.创新意识是理性思维的高层次表现.对数学问题的“观察、猜测、抽象、概括、证明”,是发现问题和解决问题的重要途径,对数学知识的迁移、组合、融会的程度越高,显示出的创新意识也就越强.
(二)命题基本原则
数学学科的系统性和严密性决定了数学知识之间深刻的内在联系,包括各部分知识的纵向联系和横向联系,要善于从本质上抓住这些联系,进而通过分类、梳理、综合,构建数学试卷的框架结构.对数学基础知识的考查,既要全面又要突出重点,对于支撑学科知识体系的重点内容,要占有较大的比例,构成数学试卷的主体,注重学科的内在联系和知识的综合性,不刻意追求知识的覆盖面.从学科的整体高度和思维价值的高度考虑问题,在知识网络交汇点设计试题,使对数学基础知识的考查达到必要的深度.
数学思想和方法是数学知识在更高层次上的抽象和概括,蕴涵在数学知识发生、发展和应用的过程中,能够迁移并广泛用于相关学科和社会生活.因此,对数学思想和方法的考查必然要与数学知识的考查结合进行,通过对数学知识的考查,反映考生对数学思想和方法理解和掌握的程度.考查时要从学科整体意义和思想价值立意,要有明确的目的,加强针对性,注重通性通法,淡化特殊技巧,有效地检测考生对中学数学知识中所蕴涵的数学思想和方法的掌握程度.
数学是一门思维的科学,是培养理性思维的重要载体,通过空间想象、直觉猜想、归纳抽象、符号表达、运算推理、演绎证明和模式构建等诸方面,对客观事物中的数量关系和数学模式作出思考和判断,形成和发展理性思维,构成数学能力的主题.对能力的考查,强调“以能力立意”,就是以数学知识为载体,从问题入手,把握学科的整体意义,用统一的数学观点组织材料.对知识的考查侧重于理解和应用,尤其是综合和灵活的应用,以此来检测考生将知识迁移到不同情境中去的能力,从而检测出考生个体理性思维的广度和深度以及进一步学习的潜能.
对能力的考查,以思维能力为核心.全面考查各种能力,强调综合性、应用性,切合学生实际.运算能力是思维能力和运算技能的结合,它不仅包括数的运算,还包括式的运算,对考生运算能力的考查主要是对算理合逻辑推理的考查,以含字母的式的运算为主.空间想象能力是对空间形式的观察、分析、抽象的能力,考查时注意与推理相结合.实践能力在考试中表现为解答应用问题,考查的重点是客观事物的数学化,这个过程主要是依据现实的生活背景,提炼相关的数量关系,构造数学模型,将现实问题转化为数学问题,并加以解决.命题时要坚持“贴近生活,背景公平,控制难度”的原则,要把握好提出问题所涉及的数学知识和方法的深度和广度,要结合中学数学教学的实际,让数学应用问题的难度更加符合考生的水平,引导考试自觉地置身于现实社会的大环境中,关心自己身边的数学问题,促使学生在学习和实践中形成和发展数学应用的意识.
创新意识和创造能力是理想思维的高层次表现.在数学的学习和研究过程中,知识的迁移、组合、融会的程度越高,展示能力的区域就越宽泛,显现出的创造意识也就越强.命题时要注意试题的多样性,涉及考查数学主体内容,体现数学素质的题目,反映数、形运动变化的题目,研究型、探索型或开放型的题目,让考生独立思考,自主探索,发挥主观能动性,探究问题的本质,寻求合适的解题工具,梳理解题程序,为考生展现创新意识、发挥创造能力创设广阔的空间.
试卷包括必考内容和选考内容两部分,必考内容为《标准》的必修内容和选修系列1的内容,其中必修内容是考查的重点. 选考内容为《标准》的选修系列4的3个专题.
Ⅱ.考试形式
考试采用闭卷、笔试形式.全卷满分为150分,考试时间为120分钟.
Ⅲ.试卷结构
全卷分为第Ⅰ卷和第Ⅱ卷两部分.
第Ⅰ卷为12个选择题,全部为必考内容.第Ⅱ卷为非选择题,分为必考和选考两部分.必考部分题由4个填空题和5个解答题组成;选考部分实行超量命题,限量做题,由选修系列4的“几何证明选讲”、“坐标系与参数方程”、“不等式选讲”各命制1个解答题,考生从3题中任选1题作答,若全选则按所做的第一个题给分.
一、试题类型
试题分为选择题、填空题和解答题三种题型.选择题是四选一型的单项选择题;填空题只要求直接填写结果,不必写出计算或推证过程;解答题包括计算题、证明题,解答题要写出文字说明、演算步骤或推证过程.三种题型分数的百分比约为:选择题40%左右,填空题10%左右,解答题50%左右.
二、难度控制
试题按其难度分为容易题、中等难度题和难题.难度在0.7以上的试题为容易题,难度为0.4—0.7的试题是中等难度题,难度在0.4以下的试题界定为难题.三种难度的试题应控制合适的分值比例,试卷总体难度适中.
Ⅳ、考试范围与要求
(一)必考内容与要求
1.集合
(1)集合的含义与表示
① 了解集合的含义,体会元素与集合的属于关系.
② 能用自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体问题.
(2)集合间的基本关系
① 理解集合之间包含与相等的含义,能识别给定集合的子集.
② 在具体情境中,了解全集与空集的含义.
(3)集合的基本运算
① 理解两个集合的并集与交集的含义,会求两个简单集合的并集与交集.
② 理解在给定集合中一个子集的补集的含义,会求给定子集的补集.
③ 能使用韦恩(Venn)图表达集合间的基本关系及集合的基本运算.
2.函数概念与基本初等函数Ⅰ
(1)函数
① 了解构成函数的要素,会求一些简单函数的定义域和值域;了解映射的概念.
② 在实际情境中,会根据不同的需要选择恰当的方法(如图像法、列表法、解析法)表示函数.
③ 了解简单的分段函数,并能简单应用(函数分段不超过三段).
④ 理解函数的单调性、最大(小)值及其几何意义;了解函数奇偶性的含义.
⑤ 会运用基本初等函数的图像分析函数的性质.
(2)指数函数
① 了解指数函数模型的实际背景.
② 理解有理指数幂的含义,了解实数指数幂的意义,掌握幂的运算.
③ 理解指数函数的概念及其单调性,掌握指数函数图像通过的特殊点,会画底数为2,3,10,1/2,1/3的指数函数的图像.
④ 体会指数函数是一类重要的函数模型.
(3)对数函数
① 理解对数的概念及其运算性质,知道用换底公式能将一般对数转化成自然对数或常用对数;了解对数在简化运算中的作用.
② 理解对数函数的概念及其单调性,掌握对数函数图像通过的特殊点,会画底数为2,10,1/2的对数函数的图像.
③ 体会对数函数是一类重要的函数模型;
④ 了解指数函数与对数函数(a>0,且a≠1)互为反函数.
(4)幂函数
① 了解幂函数的概念.
② 结合函数的图像,了解它们的变化情况.
(5)函数与方程
结合二次函数的图像,了解函数的零点与方程根的联系,判断一元二次方程根的存在性及根的个数.
(6)函数模型及其应用
① 了解指数函数、对数函数、幂函数的增长特征,结合具体实例体会直线上升、指数增长、对数增长等不同函数类型增长的含义.
② 了解函数模型(如指数函数、对数函数、幂函数、分段函数等在社会生活中普遍使用的函数模型)的广泛应用.
3.立体几何初步
(1)空间几何体
① 认识柱、锥、台、球及其简单组合体的结构特征,并能运用这些特征描述现实生活中简单物体的结构.
② 能画出简单空间图形(长方体、球、圆柱、圆锥、棱柱等的简易组合)的三视图,能识别上述的三视图所表示的立体模型,会用斜二侧法画出它们的直观图.
③ 会用平行投影与中心投影两种方法,画出简单空间图形的三视图与直观图,了解空间图形的不同表示形式.
④ 了解球、棱柱、棱锥、台的表面积和体积的计算公式.
(2)点、直线、平面之间的位置关系
① 理解空间直线、平面位置关系的定义,并了解如下可以作为推理依据的公理和定理:
◆公理1:如果一条直线上的两点在一个平面内,那么这条直线上所有的点在此平面内.
◆公理2:过不在同一条直线上的三点,有且只有一个平面.
◆公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线.
◆公理4:平行于同一条直线的两条直线互相平行.
◆定理:空间中如果一个角的两边与另一个角的两边分别平行,那么这两个角相等或互补.
② 以立体几何的上述定义、公理和定理为出发点,认识和理解空间中线面平行、垂直的有关性质与判定定理.
◆平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行.
◆一个平面内的两条相交直线与另一个平面都平行,则这两个平面平行.
◆一条直线与一个平面内的两条相交直线都垂直,则该直线与此平面垂直.
◆一个平面经过另一个平面的垂线,则这两个平面互相垂直.
◆如果一条直线与一个平面平行,那么过该直线的任一个平面与此平面的交线和该直线平行.
◆两个平行平面同时和第三个平面相交,则它们的交线相互平行.
◆垂直于同一个平面的两条直线平行.
◆两个平面垂直,则一个平面内垂直于它们交线的直线与另一个平面垂直.
③ 能运用公理、定理和已获得的结论证明一些空间位置关系的简单命题.
4.平面解析几何初步
(1)直线与方程
① 在平面直角坐标系中,结合具体图形,确定直线位置的几何要素.
② 理解直线的倾斜角和斜率的概念,掌握过两点的直线斜率的计算公式.
③ 能根据两条直线的斜率判定这两条直线平行或垂直.
④ 掌握确定直线位置的几何要素,掌握直线方程的几种形式(点斜式、两点式及一般式),了解斜截式与一次函数的关系.
⑤ 能用解方程组的方法求两直线的交点坐标.
⑥ 掌握两点间的距离公式、点到直线的距离公式,会求两条平行直线间的距离.
(2)圆与方程
① 掌握确定圆的几何要素,掌握圆的标准方程与一般方程.
② 能根据给定直线、圆的方程,判断直线与圆的位置关系;能根据给定两个圆的方程,判断圆与圆的位置关系.
③ 能用直线和圆的方程解决一些简单的问题.
④ 初步了解用代数方法处理几何问题的思想.
(3)空间直角坐标系
① 了解空间直角坐标系,会用空间直角坐标表示点的位置.
② 会推导空间两点间的距离公式.
5.算法初步
(1)算法的含义、程序框图
① 了解算法的含义,了解算法的思想.
② 理解程序框图的三种基本逻辑结构:顺序、条件分支、循环.
(2)基本算法语句
理解几种基本算法语句――输入语句、输出语句、赋值语句、条件语句、循环语句的含义.
6.统计
(1)随机抽样
① 理解随机抽样的必要性和重要性.
② 会用简单随机抽样方法从总体中抽取样本;了解分层抽样和系统抽样方法.
(2)用样本估计总体
① 了解分布的意义和作用,会列频率分布表,会画频率分布直方图、频率折线图、茎叶图,理解它们各自的特点.
② 理解样本数据标准差的意义和作用,会计算数据标准差.
③ 能从样本数据中提取基本的数字特征(如平均数、标准差),并给出合理的解释.
④ 会用样本的频率分布估计总体分布,会用样本的基本数字特征估计总体的基本数字特征,理解用样本估计总体的思想.
⑤ 会用随机抽样的基本方法和样本估计总体的思想,解决一些简单的实际问题.
(3)变量的相关性
① 会作两个有关联变量的数据的散点图,会利用散点图认识变量间的相关关系.
② 了解最小二乘法的思想,能根据给出的线性回归方程系数公式建立线性回归方程(线性回归方程系数公式不要求记忆).
7.概率
(1)事件与概率
① 了解随机事件发生的不确定性和频率的稳定性,了解概率的意义,了解频率与概率的区别.
② 了解两个互斥事件的概率加法公式.
(2)古典概型
① 理解古典概型及其概率计算公式.
② 会计算一些随机事件所含的基本事件数及事件发生的概率.
(3)随机数与几何概型
①了解随机数的意义,能运用模拟方法估计概率.
②了解几何概型的意义.
8.基本初等函数Ⅱ(三角函数)
(1)任意角的概念、弧度制
① 了解任意角的概念.
② 了解弧度制概念,能进行弧度与角度的互化.
(2)三角函数
① 理解任意角三角函数(正弦、余弦、正切)的定义.
② 能利用单位圆中的三角函数线推导出,π±的正弦、余弦、正切的诱导公式,能画出的图像,了解三角函数的周期性.
③ 理解正弦函数、余弦函数在区间[0,2π]的性质(如单调性、最大和最小值以及与轴交点等).理解正切函数在区间()的单调性.
④ 理解同角三角函数的基本关系式:
⑤ 了解函数的物理意义;能画出的图像,了解参数对函数图像变化的影响.
⑥ 会用三角函数解决一些简单实际问题,体会三角函数是描述周期变化现象的重要函数模型,.
9.平面向量
(1)平面向量的实际背景及基本概念
①了解向量的实际背景.
②理解平面向量的概念,理解两个向量相等的含义.
③理解向量的几何表示.
(2)向量的线性运算
① 掌握向量加法、减法的运算,并理解其几何意义.
② 掌握向量数乘的运算及其意义,理解两个向量共线的含义.
③ 了解向量线性运算的性质及其几何意义.
(3)平面向量的基本定理及坐标表示
① 了解平面向量的基本定理及其意义.
② 掌握平面向量的正交分解及其坐标表示.
③ 会用坐标表示平面向量的加法、减法与数乘运算.
④ 理解用坐标表示的平面向量共线的条件.
(4)平面向量的数量积
① 理解平面向量数量积的含义及其物理意义.
② 了解平面向量的数量积与向量投影的关系.
③ 掌握数量积的坐标表达式,会进行平面向量数量积的运算.
④ 能运用数量积表示两个向量的夹角,会用数量积判断两个平面向量的垂直关系.
(5)向量的应用
①会用向量方法解决某些简单的平面几何问题.
②会用向量方法解决简单的力学问题与其他一些实际问题.
10.三角恒等变换
(1)两角和与差的三角函数公式
① 会用向量的数量积推导出两角差的余弦公式.
② 会用两角差的余弦公式导出两角差的正弦、正切公式.
③ 会用两角差的余弦公式导出两角和的正弦、余弦、正切公式,导出二倍角的正弦、余弦、正切公式,了解它们的内在联系.
(2)简单的三角恒等变换
能运用上述公式进行简单的恒等变换(包括导出积化和差、和差化积、半角公式,但不要求记忆).
11.解三角形
(1)正弦定理和余弦定理
掌握正弦定理、余弦定理,并能解决一些简单的三角形度量问题.
(2) 应用
能够运用正弦定理、余弦定理等知识和方法解决一些与测量和几何计算有关的实际问题.
12.数列
(1)数列的概念和简单表示法
①了解数列的概念和几种简单的表示方法(列表、图像、通项公式).
②了解数列是自变量为正整数的一类函数.
(2)等差数列、等比数列
① 理解等差数列、等比数列的概念.
② 掌握等差数列、等比数列的通项公式与前n项和公式.
③ 能在具体的问题情境中,识别数列的等差关系或等比关系,并能用等差数列、等比数学列的有关知识解决相应的问题.
④ 了解等差数列与一次函数的关系、等比数列与指数函数的关系.
13.不等式
(1)不等关系
了解现实世界和日常生活中存在着大量的不等关系,了解不等式(组)的实际背景.
(2)一元二次不等式
① 会从实际情境中抽象出一元二次不等式模型.
② 通过函数图像了解一元二次不等式与相应的二次函数、一元二次方程的联系.
③ 会解一元二次不等式,对给定的一元二次不等式,会设计求解的程序框图.
(3)二元一次不等式组与简单线性规划问题
① 会从实际情境中抽象出二元一次不等式组.
② 了解二元一次不等式的几何意义,能用平面区域表示二元一次不等式组.
③ 会从实际情境中抽象出一些简单的二元线性规划问题,并能加以解决.
(4)基本不等式:
① 了解基本不等式的证明过程.
② 会用基本不等式解决简单的最大(小)值问题.
14.常用逻辑用语
① 理解命题的概念.
②了解“若p,则q”形式的命题的逆命题、否命题与逆否命题,会分析四种命题的相互关系.
③ 理解必要条件、充分条件与充要条件的意义.
④了解逻辑联结词“或”、“且”、“非”的含义.
⑤ 理解全称量词与存在量词的意义.
⑥ 能正确地对含有一个量词的命题进行否定.
15.圆锥曲线与方程
① 掌握椭圆的定义、几何图形、标准方程和简单几何性质(范围、对称性、顶点、离心率).
② 了解双曲线的定义、几何图形和标准方程,知道其简单的几何性质(范围、对称性、顶点、离心率、渐近线).
③ 了解抛物线的定义、几何图形和标准方程,知道其简单的几何性质(范围、对称性、顶点、离心率).
④ 理解数形结合的思想.
⑤ 了解圆锥曲线的简单应用.
16.导数及其应用
(1)导数概念及其几何意义
① 了解导数概念的实际背景.
② 通过函数图像直观理解导数的几何意义.
③ 能根据导数定义,求函数y=C(C为常数),的导数.
④ 能利用下面给出的基本初等函数的导数公式和导数的四则运算法则求简单函数的导数.
常见基本初等函数的导数公式:
(C为常数);, n∈N+;;
; ;;;.(a>0,且a≠1)
常用的导数运算法则:
法则1 :.
法则2: .
法则3: .
⑤ 了解函数单调性和导数的关系;能利用导数研究函数的单调性,会求函数的单调区间(其中多项式函数一般不超过三次).
⑥ 了解函数在某点取得极值的必要条件和充分条件;会用导数求函数的极大值、极小值(其中多项式函数一般不超过三次);会求闭区间上函数的最大值、最小值(其中多项式函数一般不超过三次).
⑦会利用导数解决实际问题.
17.统计案例
①了解回归分析的思想、方法,并能初步应用回归分析的思想、方法解决一些简单的实际问题.
②了解独立性检验的思想、方法,并能初步应用独立性检验的思想、方法解决一些简单的实际问题.
18.合情推理与演绎推理
① 了解合情推理的含义,能利用简单的归纳推理和类比推理,体会合情推理在数学发现中的作用.
② 了解演绎推理的含义,了解合情推理和演绎推理的联系和差异;掌握演绎推理的“三段论”,能运用“三段论”进行一些简单推理.
③ 了解直接证明的两种基本方法:分析法和综合法;了解分析法和综合法的思考过程和特点.
④ 了解反证法的思考过程和特点.
19.数系的扩充与复数的引入
①理解复数的基本概念,理解复数相等的充要条件.
②了解复数的代数表示法及其几何意义.
③ 能进行复数代数形式的四则运算,了解复数代数形式的加、减运算的几何意义.
20.框图
① 通过具体实例进一步认识程序框图.
② 通过实例了解工序流程图.
③ 能绘制简单实际问题的流程图,体会流程图在解决实际问题中的作用.
④通过实例了解结构图.
⑤会运用结构图梳理已学过的知识、整理收集到的资料信息.
(二)选考内容与要求
1.几何证明选讲
(1)理解相似三角形的定义与性质,了解平行截割定理.
(2)会证明和应用以下定理:①直角三角形射影定理;②圆周角定理;③圆的切线判定定理与性质定理;④相交弦定理;⑤圆内接四边形的性质定理与判定定理;⑥切割线定理.
2.坐标系与参数方程
(1)坐标系
① 了解坐标系的作用,了解在平面直角坐标系伸缩变换作用下平面图形的变化情况.
② 了解极坐标的基本概念,会在极坐标系中用极坐标刻画点的位置,能进行极坐标和直角坐标的互化.
③ 能在极坐标系中给出简单图形(如过极点的直线、过极点或圆心在极点的圆)表示的极坐标方程.
④了解参数方程,了解参数的意义.
⑤ 能选择适当的参数写出直线、圆和椭圆的参数方程.
3.不等式选讲
① 理解绝对值的几何意义,并了解下列不等式成立的几何意义及取等号的条件:
|a+b|≤|a|+|b| (a,b∈R);
|a-b|≤|a-c|+|c-b| (a,b∈R).
②会利用绝对值的几何意义求解以下类型的不等式:
|ax+b|≤c;|ax+b|≥c;|x-a|+|x-b|≥c.
③ 通过一些简单问题了解证明不等式的基本方法:比较法、综合法、分析法.