1.判断p是q的什么条件,常用的方法是验证由p能否推出q,由q能否推出p,对于否定性命题,注意利用等价命题来判断.
2.在涉及到求参数的取值范围又与充分、必要条件有关的问题时,常常借助集合的观点来考虑.
§2 充分条件与必要条件
2.1 充分条件
2.2 必要条件
知识梳理
1.充分条件 2.必要条件
作业设计
1.A [“A=B”“sin A=sin B”,反过来不对.]
2.B [k=0时,方程y=kx+b也表示直线.]
3.A [a<0,b<0?a+b<0,反之不对.]
4.A [p:α是第二象限角语句q:sin α·tan α<0,反之不能成立.]
5.A
6.充分不必要
解析 由lg x>lg y,得x>y>0,
由>,得x>y≥0.
7.充分不必要
解析 ab≠0a≠0,所以是充分条件;
a≠0,b=0ab=0,不必要条件.
8.必要不充分
解析 命题q:αβ命题p:a与b无公共点,反之不对.
9.解 由f(x)=ax2+bx+1是偶函数,
得f(-x)=ax2-bx+1=ax2+bx+1恒成立.
bx=0对任意实数x恒成立,所以b=0,
同理由b=0也可以得出f(x)是偶函数.
故“若p,则q”的命题是真命题,它的逆命题是真命题,p既是q的充分条件,又是必要条件.
10.解 由(x-a)2<1,得a-10,则|a|>0,所以“a>0”是“|a|>0”的充分条件;若|a|>0,则a>0或a<0,所以“a>0”不是“|a|>0”的必要条件.]
12.解 由x2-4ax+3a2<0,a<0,得3a0或x2-x-6≤0,
可得x<-4或x≥-2.
因为q是p的必要不充分条件,
所以或.
解得-≤a<0或a≤-4.
故实数a的取值范围为(-∞,-4].