从5名男医生、4名女医生中选3名医生组成一个医疗小分队,要求其中男、女医生都有,则不同的组队方案共有 ( )
A. 70 种 B. 80种 C. 100 种 D. 140 种
男运动员6名,女运动员4名,其中男女队长各1人.选派5人外出比赛.在下列情形中各有多少种选派方法?
(1)男运动员3名,女运动员2名;
(2)至少有1名女运动员.
将4名教师分配到3所中学任教,每所中学至少1名教师,则不同的分配方案共有( )
A.12种 B.24种
C.36种 D.48种
甲、乙、丙3人站到共有7级的台阶上,若每级台阶最多站2人,同一级台阶上的人不区分站的位置,则不同的站法种数是( )
A.258 B.306
C.336 D.296
只用1,2,3三个数字组成一个四位数,规定这三个数必须同时使用,且同一数字不能相邻出现,这样的四位数有( )
A.6个 B.9个 C.18个 D.36个
由1、2、3、4、5、6组成没有重复数字且1、3都不与5相邻的六位偶数的个数是( )
A.72 B.96 C.108 D.144
将甲、乙、丙、丁四名学生分到三个不同的班,每个班至少分到一名学生,且甲、乙两名学生不能分到同一个班,则不同分法的种数为( )
A.18 B.24 C.30 D.36
甲、乙两人从4门课程中各选修2门,则甲、乙所选的课程中至少有1门不相同的选法共有 ( )
A. 6 B. 12 C. 30 D. 36
在“海上联合2013”中俄联合军演中,中方参加演习的有4艘军舰、3架飞机,俄方有5艘军舰、2架飞机,若从中、俄两方各选出2个单位(1架飞机或1艘军舰都作为1个单位,所有的军舰两两不同,所有的飞机两两不同),且选出的4个单位中恰有1架飞机的不同选法共有( )
A.180种 B.120种
C.160种 D.38种
将5名实习教师分配到高一年级的3个班实习,每班至少1名,最多2名,则不同的分配方案有( )
(A)30种 (B)90种 (C)180种 (D)270种
形如45132的数称为“波浪数”,即十位数字,千位数字均比与它们各自相邻的数字大,则由1,2,3,4,5可构成不重复的五位“波浪数”的个数为________.
4个不同的球,4个不同的盒子,把球全部放入盒内.
(1)恰有1个盒不放球,共有几种放法?
(2)恰有1个盒内有2个球,共有几种放法?
(3)恰有2个盒不放球,共有几种放法?
详解:分为2男1女,和1男2女两大类,共有=70种
(1)120种 (2) 246种.
详解:(1)第一步:选3名男运动员,有C种选法.
第二步:选2名女运动员,有C种选法.
共有C·C=120种选法.
(2) 至少1名女运动员包括以下几种情况:
1女4男,2女3男,3女2男,4女1男.
由分类加法计数原理可得总选法数为
CC+CC+CC+CC=246种.
C.
详解: 先分组再排列:将4名教师分成3组有C种分法,再将这三组分配到三所学校有A种分法,由分步乘法计数原理,知一共有C·A=36种不同分配方案.
C.
详解:根据题意,每级台阶最多站2人,所以,分两类:第一类,有2人站在同一级台阶,共有CA种不同的站法;第二类,一级台阶站1人,共有A种不同的站法.根据分类加法计数原理,得共有CA+A=336(种)不同的站法.
C.
详解:
注意题中条件的要求,一是三个数字必须全部使用,二是相同的数字不能相邻,选四个数字共有C=3(种)选法,即1231,1232,1233,而每种选择有A×C=6(种)排法,所以共有3×6=18(种)情况,即这样的四位数有18个.
C.
详解:分两类:若1与3相邻,有A·CAA=72(个),若1与3不相邻有A·A=36 (个)
故共有72+36=108个.
C.
详解: 用间接法解答:四名学生中有两名学生分在一个班的种数是,顺序有种,而甲乙被分在同一个班的有种,所以种数是.
C.
详解:可以先让甲、乙任意选择两门,有种选择方法,然后再把两个人全不相同的情况去掉,两个人全不相同,可以让甲选两门有 种选法,然后乙从剩余的两门选,有种不同的选法,全不相同的选法是种方法,所以至少有一门不相同的选法为—=30种不同的选法.
A.
详解:
若中方选出1架飞机,则选法有CCC=120种;若俄方选出1架飞机,则选法有CCC=60种,故不同选法共有120+60=180种.
B.
详解:将5名实习教师分配到高一年级的3个班实习,每班至少1名,最多2名,则将5名教师分成三组,一组1人,另两组都是2人,有种方法,再将3组分到3个班,共有种不同的分配方案,选B.
16.
详解: 由题意可得,十位和千位只能是4,5或者3,5.若十位和千位排4,5,则其他位置任意排1,2,3,则这样的数有AA=12(个);若十位和千位排5,3,这时4只能排在5的一边且不能和其他数字相邻,1,2在其余位置上任意排列,则这样的数有AA=4(个),综上,共有16个.
(1)144种. (2)144种. (3)6种.
详解:(1)为保证“恰有1个盒不放球”,先从4个盒子中任意取出去一个,问题转化为“4个球,3个盒子,每个盒子都要放入球,共有几种放法?”即把4个球分成2,1,1的三组,然后再从3个盒子中选1个放2个球,其余2个球放在另 外2个盒子内,由分步乘法计数原理,共有CCC×A=144种.
(2)“恰有1个盒内有2个球”,即另外3个盒子放2个球,每个盒子至多放1个球,也即另外3个盒子中恰有一个空盒,因此,“恰有1个盒内有2个球”与“恰有1个盒不放球”是同一件事,所以共有144种放法.
(3)确定2个空盒有C种方法.