单独报考
当前位置:中华考试网 >> 高考 >> 全国高考 >> 全国高考数学模拟题 >> 2017年高考数学提分专项练习(十)

2017年高考数学提分专项练习(十)_第2页

中华考试网  2016-12-27  【

16.设数列{an}的前n项和为Sn,a1=1,an=+2(n-1)(nN+).

(1)求证:数列{an}为等差数列,并求an与Sn;

(2)是否存在自然数n,使得S1++…+-(n-1)2=2015?若存在,求出n的值;若不存在,请说明理由.

一、非标准

1.A 解析:an=an-1+2(n≥2),

∴an-an-1=2.

又a1=1,∴数列{an}是以1为首项,以2为公差的等差数列,

故a7=1+2×(7-1)=13.

2.B 解析:S9==27.

3.A 解析:设等差数列{an}的公差为d,

则依题意得由此解得

所以a6=a1+5d=7,a1a6=14.

4.C 解析:由题意得3a6=15,a6=5.

所以a3+a4+…+a9=7a6=7×5=35.

5.C 解析:设等差数列{an}的公差为d,

a11-a8=3d=3,∴d=1.

∵S11-S8=a11+a10+a9=3a1+27d=3,

∴a1=-8,∴令an=-8+(n-1)>0,解得n>9.

因此使an>0的最小正整数n的值是10.

6.C 解析:由已知Sn-Sn-1=2,可得=2,

{}是以1为首项,2为公差的等差数列,

故=2n-1,Sn=(2n-1)2,

a81=S81-S80=1612-1592=640,故选C.

7.8 解析:由等差数列的性质可得a7+a8+a9=3a8>0,即a8>0;而a7+a10=a8+a9<0,故a9<0.所以数列{an}的前8项和最大.

8.10 解析:设等差数列{an}的前n项和为Sn,则S9-S4=0,

即a5+a6+a7+a8+a9=0,5a7=0,故a7=0.

而ak+a4=0=2a7,故k=10.

9.解:(1)设等差数列{an}的公差为d,且d>0,

由等差数列的性质,得a2+a5=a3+a4=22,

所以a3,a4是关于x的方程x2-22x+117=0的解,

所以a3=9,a4=13.

易知a1=1,d=4,故所求通项为an=1+(n-1)×4=4n-3.

(2)由(1)知Sn==2n2-n,

所以bn=.

(方法一)所以b1=,b2=,b3=(c≠0).

令2b2=b1+b3,解得c=-.

当c=-时,bn==2n,

当n≥2时,bn-bn-1=2.

故当c=-时,数列{bn}为等差数列.

(方法二)bn=.

c≠0,∴可令c=-,得到bn=2n.

bn+1-bn=2(n+1)-2n=2(n∈N+),

∴数列{bn}是公差为2的等差数列.

故存在一个非零常数c=-,使数列{bn}也为等差数列.

123
纠错评论责编:jiaojiao95
相关推荐
热点推荐»