13.
已知直三棱柱ABC-A′B′C′满足BAC=90°,AB=AC=AA′=2,点M,N分别为A′B和B′C′的中点.
(1)证明:MN平面A′ACC′;
(2)求三棱锥C-MNB的体积.
命题立意:本题主要考查空间线面位置关系、三棱锥的体积等基础知识.意在考查考生的空间想象能力、推理论证能力和运算求解能力.
解析:(1)证明:如图,连接AB′,AC′,
四边形ABB′A′为矩形,M为A′B的中点,
AB′与A′B交于点M,且M为AB′的中点,又点N为B′C′的中点.
MN∥AC′.
又MN平面A′ACC′且AC′平面A′ACC′,
MN∥平面A′ACC′.
(2)由图可知VC-MNB=VM-BCN,
BAC=90°, BC==2,
又三棱柱ABC-A′B′C′为直三棱柱,且AA′=4,
S△BCN=×2×4=4.
A′B′=A′C′=2,BAC=90°,点N为B′C′的中点,
A′N⊥B′C′,A′N=.
又BB′⊥平面A′B′C′,
A′N⊥BB′,
A′N⊥平面BCN.
又M为A′B的中点,
M到平面BCN的距离为,
VC-MNB=VM-BCN=×4×=.
14.
如图,在四棱锥P-ABCD中,平面PAD⊥平面ABCD,ABDC,PAD是等边三角形,BD=2AD=8,AB=2DC=4.
(1)设M是PC上的一点,证明:平面MBD平面PAD;
(2)求四棱锥P-ABCD的体积.
命题立意:本题主要考查线面垂直的判定定理、面面垂直的判定定理与性质定理以及棱锥的体积的计算等,意在考查考生的逻辑推理能力与计算能力,考查化归与转化思想.
解析:(1)证明:在ABD中,因为AD=4,BD=8,AB=4,所以AD2+BD2=AB2.
故ADBD.
又平面PAD平面ABCD,平面PAD∩平面ABCD=AD,BD平面ABCD,
所以BD平面PAD,
又BD平面MBD,
所以平面MBD平面PAD.
(2)过点P作OPAD交AD于点O,
因为平面PAD平面ABCD,
所以PO平面ABCD.
因此PO为四棱锥P-ABCD的高.
又PAD是边长为4的等边三角形,
所以PO=×4=2.
在四边形ABCD中,ABDC,AB=2DC,
所以四边形ABCD是梯形.
在Rt△ADB中,斜边AB上的高为=,此即为梯形ABCD的高.
所以四边形ABCD的面积S=×=24.
故四棱锥P-ABCD的体积VP-ABCD=×24×2=16.