错解三:认为频率要改变,理由同错解二。而关于振幅的改变与否,除了错解一中所示理由外,即总能量不变,而因为重力势能EP=mgh,EP不变,m变为原来的4倍,h一定变小了,即上摆到最高点的高度下降了,所以振幅要改变,应选D.
「错解原因」 此题主要考查决定单摆频率(周期)和振幅的是什么因素,而题中提供了两个变化因素,即质量和最大速度,到底频率和振幅与这两个因素有没有关系。若有关系,有什么关系,是应该弄清楚的。
而错解二和错解三中都认为频率不变,这是因为为不清楚决定单摆的因素是摆长l和当地重力加速度g,而与摆球质量及运动到最低点的速度无关。
错解二中关于频率不变的判断是正确的,错误出现在后半句的结论上。判断只从能量不变去看,当E总不变时,EP=mgh,m变大了,h一定变小。说明有些同学考虑问题还是不够全面。
「分析解答」 (1)实际上,通过实验我们已经了解到,决定单
单摆的周期与质量无关,与单摆的运动速度也无关。当然,频率也与质量和速度无关,所以不能选C,D.
(2)决定振幅的是外来因素。反映在单摆的运动中,可以从能量去观察,从上面分析我们知道,在平衡位置(即最低点)时的动能EK
的重力势能也不变。但是由于第二次摆的质量增大了(实际上单摆已经变成另一个摆动过程了),势能EP=mgh不变,m大了,h就一定变小了,也就是说,振幅减小了。因此正确答案应选B.
「评析」 本题的分析解答提醒我们,一是考虑要全面,本题中m,v两因素的变化对确定的单摆振动究竟会产生怎样的影响,要进行全面分析;二是分析问题要有充分的理论依据,如本题中决定单摆振动的频率
例3 如图6-1所示,光滑圆弧轨道的半径为R,圆弧底部中点为O,两个相同的小球分别在O正上方h处的A点和离O很近的轨道B点,现同时释放两球,使两球正好在O点相碰。问h应为多高?
「错解」 对B球,可视为单摆,延用单摆周期公式可求B球到达O点的时间:
对A球,它做自由落体运动,自h高度下落至O点
「错解原因」 上述答案并没有完全错,分析过程中有一点没有考虑,即是振动的周期性,因为B球在圆形轨道上自B点释放后可以做往
上述解答漏掉一些解,即上述解答只是多个解答中的一个。
对B球振动周期
到达O点的时间为
显然,前面的解仅仅是当n=0时的其中一解而已。
「评析」 在解决与振动有关的问题时,要充分考虑到振动的周期性,由于振动具有周期性,所以此类问题往往答案不是一个而是多个。
一级建造师二级建造师消防工程师造价工程师土建职称公路检测工程师建筑八大员注册建筑师二级造价师监理工程师咨询工程师房地产估价师 城乡规划师结构工程师岩土工程师安全工程师设备监理师环境影响评价土地登记代理公路造价师公路监理师化工工程师暖通工程师给排水工程师计量工程师