翻译资格考试

各地资讯

当前位置:考试网 >> 翻译资格考试 >> 二级笔译 >> 历年试题 >> 2011年11月翻译资格考试中级笔译真题

2011年11月翻译资格考试中级笔译真题

来源:考试网   2016-12-17【

  2011年11月英语二级《笔译实务》试题

  Section 1: English-Chinese Translation(英译汉)

  Part A Compulsory Translation(必译题)

  it was done at all.

  They say they hope the study will inspire similar collaborations between scientists whose focusis safely exploiting specific natural resources and those interested mainly in conserving them.

  “We need to merge those two communities,” said Steve Murawski, chief fisheries scientist forthe National Oceanic and Atmospheric Administration. “This paper starts to bridge that gap”

  The collaboration began in 2006 when Boris Worm, a marine ecologist at Dalhousie Universityin Halifax, Nova Scotia, and other scientists made an alarming prediction: if current trendscontinue, by 2048 overfishing will have destroyed most commercially important populations ofsaltwater fish. Ecologists applauded the work. But among fisheries management scientists,reactions ranged from skepticism to fury over what many called an alarmist report.

  Among the most prominent critics was Ray Hilborn, a professor of aquatic and fisherysciences at the University of Washington in Seattle. Yet the disagreement did not play out intypical scientific fashion with, as Dr. Hilborn put it, “researchers firing critical papers back andforth.” Instead, he and Dr. Worm found themselves debating the issue on National PublicRadio.

  “We started talking and found more common ground than we had expected,” Dr. Worm said.Dr. Hilborn recalled thinking that Dr. Worm “actually seemed like a reasonable person.”

  The two decided to work together on the issue. They sought and received financing andbegan organizing workshops at the National Center for Ecological Analysis and Synthesis, anorganization sponsored by the National Science Foundation and based at the University ofCalifornia, Santa Barbara.

  At first, Dr. Hilborn said in an interview, “the fisheries management people would go to lunchand the marine ecologists would go to lunch” 一 separately. But soon they were collecting andsharing data and recruiting more colleagues to analyze it.

  Dr. Hilborn said he and Dr. Worm now understood why the ecologists and the managementscientists disagreed so sharply in the first place. For one thing, he said, as long as a fishspecies was sustaining itself, management scientists were relatively untroubled if itsabundance fell to only 40 or 50 percent of what it might otherwise be. Yet to ecologists, hesaid, such a stock would be characterized as “depleted” 一 “a very pejorative word.”

  In the end, the scientists concluded that 63 percent of saltwater fish stocks had been depleted“below what we think of as a target range,” Dr. Worm said.

  But they also agreed that fish in well-managed areas, including the United States, wererecovering or doing well. They wrote that management techniques like closing some areas tofishing, restricting the use of certain fishing gear or allocating shares of the catch to individualfishermen, communities or others could allow depleted fish stocks to rebound.

  The researchers suggest that a calculation of how many fish in a given species can be caughtin a given region without threatening the stock, called maximum sustainable yield, is lessuseful than a standard that takes into account the health of the wider marine environment.They also agreed that solutions did not lie only in management techniques but also in thepolitical will to apply them, even if they initially caused economic disruption.

  Because the new paper represents the views of both camps, its conclusions are likely to beinfluential, Dr. Murawski said. “Getting a strong statement from those communities that thereis more to agree on than to disagree on builds confidence,” he said.

  At a news conference on Wednesday, Dr. Worm said he hoped to be alive in 2048, when hewould turn 79. If he is, he said, “I will be hosting a seafood party — at least I hope so”

  Part B Optional Translation(二选一题)

  Topic 1 (选题一)

  As I mentioned last week, I’ve recently returned from Australia. While I was there, I visited aeucalyptus forest that, in February, was the scene of an appalling wildfire. Perhaps naively, Ihad expected to find that many trees had been killed. They hadn’t. They had blackened bark,but were otherwise looking rather well, many of them wreathed in new young leaves. Thisprompted me to consider fire and the role it plays as a force of nature.

  Fossil charcoals tell us that wildfires have been part of life on Earth for as long as there havebeen plants on land. That’s more than 400 million years of fire. Fire was here long beforearriviste plants like grasses; it pre-dated the first flowers. And without wanting to get mysticalabout it, fire is, in many respects, a kind of animal, albeit an ethereal one. Like any animal, itconsumes oxygen. Like a sheep or a slug, it eats plants. But unlike a normal animal, it’s ashape-shifter. Sometimes, it merely nibbles a few leaves; sometimes it kills grown trees.Sometimes it is more deadly and destructive than a swarm of locusts.

  The shape-shifting nature of fire makes it hard to study, for it is not a single entity. Somefires are infernally hot; others, relatively cool. Some stay at ground level; others climb trees.Moreover, fire is much more likely to appear in some parts of the world than in others. Satelliteimages of the Earth show that wildfires are rare in, say, northern Europe, and common in partsof central Africa and Australia. (These days many wildfires are started by humans, either onpurpose or by accident. But long before our ancestors began to throw torches or cigarettebutts, fires were started by lightning strikes, or by sparks given off when rocks rub together inan avalanche.)

  Once a fire gets started, many factors contribute to how it will behave. The weather obviouslyhas a huge effect: winds can fan flames, rains can quench them. The lie of the land matters,too: fire runs uphill more readily than it goes down. But another crucial factor is what type ofplants the fire has to eat.

  It’s common knowledge that plants regularly exposed to fire tend to have features that helpthem cope with it — such as thick bark, or seeds that only grow after being exposed tointense heat or smoke. But what is less often remarked on is that the plants themselves affectthe nature and severity of fire.

  The shape-shifting nature of fire makes it hard to study, for it is not a single entity. Somefires are infernally hot; others, relatively cool. Some stay at ground level; others climb trees.Moreover, fire is much more likely to appear in some parts of the world than in others. Satelliteimages of the Earth show that wildfires are rare in, say, northern Europe, and common in partsof central Africa and Australia. (These days many wildfires are started by humans, either onpurpose or by accident. But long before our ancestors began to throw torches or cigarettebutts, fires were started by lightning strikes, or by sparks given off when rocks rub together inan avalanche.)

  Once a fire gets started, many factors contribute to how it will behave. The weather obviouslyhas a huge effect: winds can fan flames, rains can quench them. The lie of the land matters,too: fire runs uphill more readily than it goes down. But another crucial factor is what type ofplants the fire has to eat.

  It’s common knowledge that plants regularly exposed to fire tend to have features that helpthem cope with it — such as thick bark, or seeds that only grow after being exposed tointense

  heat or smoke.

  Topic 2(选题二)

  抱歉,暂未在互联网上找到试题来源。

12
责编:snrvge 评论 纠错

报考指南

报名时间 报名流程 考试时间
报考条件 考试科目 考试级别
成绩查询 考试教材 考点名录
合格标准 证书管理 备考指导

更多

  • 会计考试
  • 建筑工程
  • 职业资格
  • 医药考试
  • 外语考试
  • 学历考试